19100-00710 PUMP ASSY, INJECTI Calibration Data


Rating:
25
Buy PUMP ASSY, INJECTI 19100-00710 genuine, new aftermarket engine parts with delivery

Information pump assy, injecti Denso

Product
Fuel Injection Pump
Vehicle engine
DYNA 13B
Engine
13B
Serial start-end
8505--8602
Info
Injector Nozzle
093500-2890
Injector nozzle: 0935002890

KIT List:

Part name
Kit1
Kit2
Body assy, injecti
Governor assy, mec
Pump assy, fuel fe

Components :

00.001
PUMP ASSY, INJECTI
A4,R801
01.002
BODY ASSY, INJECTI
A4
01.003
GOVERNOR ASSY, MEC
R801
02.004
COVER ASSY, GOVERN
01.005
PUMP ASSY, FUEL FE
KE

Scheme #.#:

Qty
Part num
Name
Remarks
Manufacture num
000
[01]
19100-00710
PUMP ASSY, INJECTI
A4,R801
22100-58280 TOYOTA
001
[01]
BODY ASSY, INJECTI
A4
22120-58290 TOYOTA
002
[01]
GOVERNOR ASSY, MEC
R801
22410-58250 TOYOTA
003
[01]
PUMP ASSY, FUEL FE
KE
22510-873 TOYOTA
008
[01]
COVER, CONTROL RAC
22116-56230 TOYOTA
009
[01]
SHAFT, SPLINE
22174-58201 TOYOTA
010
[01]
NUT, TIMER ROUND
22611-58200 TOYOTA
011
[01]
WASHER, SPRING
T3.5
90099-01449 TOYOTA
012
[01]
KEY, WOODRUFF
T3.985
90099-13023 TOYOTA
013
[01]
CLAMP, HOSE
90929-01132 TOYOTA
016
[01]
BOLT, W/WASHER
M6,L20
90091-20608 TOYOTA
017
[04]
BOLT, W/WASHER
M6,L16
90099-04319 TOYOTA
018
[01]
BOLT, W/WASHER
M6,L11.5 -9101
90099-04320 TOYOTA
018
[01]
BOLT, W/WASHER
M6,L12.5 9102-
90099-04415 TOYOTA
019
[01]
BOLT, HEXAGON
M8,L18 -8604
90031-01132 TOYOTA
019
[01]
BOLT, W/WASHER
M8,L18 8604-
90099-04346 TOYOTA
020
[01]
WASHER, SPRING
FOR M8 -8604
94511-00800 TOYOTA

Include in ##:

19100-00710 as PUMP ASSY, INJECTI

Cross reference number



Part num
Firm num
Firm
Name
19100-00710 
22100-5828 
PUMP ASSY, INJECTI
1910000710 
22100-58280 
TOYOTA
PUMP ASSY, INJECTI

Test Calibration Data:

1910000710




Information:


Illustration 1 g01046024
Engine with two turbochargers (1) Inlet valves (2) Exhaust valves (3) Inlet manifold (4) Exhaust manifold (5) Water inlet for the aftercooler (6) Water outlet for the aftercooler (7) Aftercooler (8) Air inlet (9) Exhaust outlet (10) Compressor (11) TurbineThe components of the air inlet and exhaust system control the quality of air and the amount of air that is available for combustion. The components of the air inlet and exhaust system are the following components:
Air cleaner
Turbocharger
Aftercooler
Cylinder head
Valves and valve system components
Piston and cylinder
Inlet manifold
Exhaust manifoldNote: The following description of the operation of the air inlet and exhaust system assumes that the engine is developing boost pressure. Inlet air passes through the air cleaner into the air inlet (8) of the turbocharger compressor wheel (10). The turbocharger will supply more volume of air into the engine. This compressing of the air is referred to as boost. The compressing of air causes the air temperature to rise to about 204 °C (400 °F). As the air flows through the aftercooler (7) the temperature of the compressed air lowers to about 46 °C (115 °F). Cooling of the inlet air causes the air to become more dense. This increases combustion efficiency and this increases horsepower output.From the aftercooler, air enters the inlet manifold (3). Air flow from the inlet manifold (3) into the cylinders is controlled by inlet valves (1). There are two inlet valves and two exhaust valves (2) for each cylinder. The inlet valves open at the top center position before the piston moves toward the bottom center position. This is called the inlet stroke. When the inlet valves open, cooled compressed air from the inlet port enters the cylinder. The inlet valves close as the piston reaches the bottom center position. The piston begins to travel back to the top center position on the compression stroke. The air in the cylinder is compressed to a very high temperature. When the piston is near the end of the compression stroke, fuel is injected into the cylinder and mixes with the air. This causes combustion to start in the cylinder. Once combustion starts, the combustion force pushes the piston toward the bottom center position. This is called the power stroke. The exhaust valves open when the piston moves toward the bottom center position and the exhaust gases are pushed through the exhaust port into exhaust manifold (4) as the piston travels toward top center on the exhaust stroke. The exhaust valves close and the cycle starts again. The complete cycle consists of four strokes:
Inlet
Compression
Power
ExhaustExhaust gases from the exhaust manifold (4) enter the turbine side of the turbocharger. The exhaust gas temperature causes the turbine wheel (11) in the turbocharger to turn. The turbine wheel is connected to the shaft that drives the compressor wheel. Exhaust gases from the turbine wheel exit the turbocharger (9) .Turbocharger
Illustration 2 g01361124
Water cooled turbocharger (8) Air inlet (9) Exhaust outlet (11) Exhaust inlet (12) Compressor housing (13) Compressor wheel (14) Bearing (15) Oil Inlet

Have questions with 19100-00710?





Group cross 19100-00710

Back to top